Who is Present? Individuality in the Call Structure of the Eurasian Otter Whistle

Dominik del Castillo¹, Irene Weinberger², Megan Wyman¹, Marta Manser¹
¹Departement of Evolutionary Biology and Environmental Studies, University of Zurich
²Foundation Pro Lutra, Bern

Are there individual call signatures in the Eurasian otter whistle that allow to distinguish between individuals?

![Figure 1a](image1.png)
Figure 1a. Correct classification of each call for the lower-quality calls. Each call is represented by a bar. The different colours of the bars show how often an individual has been allocated to a call.

![Figure 1b](image2.png)
Figure 1b. The mean and variation (SD) of the fundamental frequency of the eleven individuals. The variation of the fundamental frequency within an individual was usually 300 to 350 Hz in all individuals.

Conclusions:
- Eurasian otters show individual call signature in the whistle call.
 - ‘mean fundamental frequency’ and ‘call duration’ proved sufficient to correctly classify high-quality whistles and low-quality whistles.
- PAM has high potential and could be applied to other elusive species that are not considered as highly vocal.

Data Collection:
- 6 Zoos in Switzerland
- 11 Individuals (6 males, 5 females)
- Recorded from Jan – Sep 2019
- Stationary microphones recorded continuously for minimum 72h
- Directional microphone for focal recording
- Additional historical data set from Germany

Data Processing:
- Audacity: Labelling and cutting of calls
- Praat: Standardizing and analysing the calls

Statistical Analysis:
- Beechers H₂: to reduce number of parameters
- pDFA: “leave-one-out” method with permutations
- Final model with only two parameters: call duration & mean fundamental frequency

Results:
- Permuted discriminant function analysis revealed that the eleven otters showed individual differences in their call structure.
- High-quality (96.4%) and low-quality whistles (79.3%, Fig. 2a) were correctly classified and low-quality whistles both higher than expected by chance.
- Fundamental frequency is the most important parameter (Fig. 2b)

The Eurasian otter (*Lutra lutra*)
- Lives elusive and nocturnal
- Monitoring relies on tracks and spraints (faeces)
- Detection probability of spraints is 30% on a 600m transect¹
- Marking behaviour varies between sexes² and seasons³
- Individuality is based on DNA extraction from spraints
- A total of 6 different call types are described⁴

References:

Acknowledgements: We thank all the zoos and wildlife parks to enable this project by allowing us to work on their beloved animals.