

Are there individual call signatures in the Eurasia otter whistle that allow to distinguish between individuals?

Fig 1a. Correct classification of each call for the lower-quality calls. Each call is represented by a bar. The different colours of the bars show how often an individual has been allocated to a call.

Conclusions: whistle call.

correctly classify high-quality whistles and low-quality whistles.

Who is Present? Individuality in the Call Structure of the Eurasian Otter Whistle

Dominik del Castillo¹, Irene Weinberger², Megan Wyman¹, Marta Manser¹ ¹Departement of Evolutionary Biology and Environmental Studies, University of Zurich ²Foundation Pro Lutra, Bern

Fig 1b. The mean and variation (SD) of the fundamental frequency of the eleven individuals. The variation of the fundamental frequency within an individual was usually 300 to 350 Hz in all individuals.

Eurasian otters show individual call signature in the

Year PAM has high potential and could be applied to other elusive species that are not considered as highly vocal.

n	Data Collection:	Da
	 6 Zoos in Switzerland 	
	 11 Individuals (6 males, 5 females) 	
	 Recorded from Jan – Sep 2019 	St
	 Stationary microphones recorded 	
	continuously for minimum 72h	
	 Directional microphone for focal recording 	
	Additional historical data set from Germany	
	Results:	
	 Permuted discriminant function a 	an
	showed individual differences in their call s	str
	 High-quality (96.4%) and low-quali classified and low-quality whistles 	-
	 Fundamental frequency is the most 	ti
ild Zora		

The **Eurasian otter** (*Lutra lutra*)

- Lives elusive and nocturnal
- Monitoring relies on tracks and spraints (faeces)
- Detection probability of spraints is 30% on a 600m transect¹
- Marking behaviour varies between sexes² and seasons³
- Individuality is based on DNA extraction from spraints
- A total of 6 different call types are described⁴

References:

¹ Parry GS, Bodger O, McDonald RA, Forman DW. 2013. A systematic re-sampling approach to assess the probability of detecting otters Lutra lutra using spraint surveys on small lowland rivers. ² Lampa S, Mihoub JB, Gruber B, Klenke R, Henle K. 2015. Non-invasive genetic mark-recapture as a means to study population sizes and marking behaviour of the elusive Eurasian otter (Lutra lutra)³ Macdonald SM, Mason CF. 1987. Seasonal Marking in an Otter Population. ⁴ Gnoli C, Prigioni C. 1995. Preliminary study on the acoustic communication of captive otters (Lutra lutra).

ata Processing:

- Audacity: Labelling and cutting of calls
- Praat: Standardizing and analysing the calls
- catistical Analysis:
- Beechers H_s: to reduce number of parameters
- pDFA: "leave-one-out" method with permutations
- Final model with only two parameters : call duration & mean fundamental frequency

nalysis revealed that the eleven otters

ucture.

whistles (79.3%, Fig. 2a) were correctly oth higher than expected by chance. important parameter (Fig. 2b)

Acknowledgements:

We thank all the zoos and wildlife parks to enable this project by allowing us to work on their beloved animals.